DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework
نویسندگان
چکیده
Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation.
منابع مشابه
DNA Methylation Variants at HIF3A Locus, B-Vitamin Intake, and Long-term Weight Change: Gene-Diet Interactions in Two U.S. Cohorts
The first epigenome-wide association study of BMI identified DNA methylation at an HIF3A locus associated with BMI. We tested the hypothesis that DNA methylation variants are associated with BMI according to intake of B vitamins. In two large cohorts, we found significant interactions between the DNA methylation-associated HIF3A single nucleotide polymorphism (SNP) rs3826795 and intake of B vit...
متن کاملHypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction
Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) fro...
متن کاملHIF3A association with adiposity: the story begins before birth
AIM Determine if the association of HIF3A DNA methylation with weight and adiposity is detectable early in life. MATERIAL & METHODS We determined HIF3A genotype and DNA methylation patterns (on hybridization arrays) in DNA extracted from umbilical cords of 991 infants. Methylation levels at three CpGs in the HIF3A first intron were related to neonatal and infant anthropometry and to genotype ...
متن کاملDNA methylation and body-mass index: a genome-wide analysis
BACKGROUND Obesity is a major health problem that is determined by interactions between lifestyle and environmental and genetic factors. Although associations between several genetic variants and body-mass index (BMI) have been identified, little is known about epigenetic changes related to BMI. We undertook a genome-wide analysis of methylation at CpG sites in relation to BMI. METHODS 479 in...
متن کاملHIF3A DNA Methylation Is Associated with Childhood Obesity and ALT
Gene polymorphisms associated so far with body mass index (BMI) can explain only 1.18-1.45% of observed variation in BMI. Recent studies suggest that epigenetic modifications, especially DNA methylation, could contribute to explain part of the missing heritability, and two epigenetic genome-wide analysis studies (EWAS) have reported that Hypoxia Inducible Factor 3 Alpha Subunit (HIF3A) methylat...
متن کامل